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Exploratory cognitive diagnosis models (CDMs) estimate the Q matrix, which is
a binary matrix that indicates the attributes needed for affirmative responses to
each item. Estimation of Q is an important next step for improving classifica-
tions and broadening application of CDMs. Prior research primarily focused on
an exploratory version of the restrictive deterministic-input, noisy-and-gate
model, and research is needed to develop exploratory methods for more
flexible CDMs. We consider Bayesian methods for estimating an exploratory
version of the more flexible reduced reparameterized unified model (rRUM).
We show that estimating the rRUM Q matrix is complicated by a confound
between elements of Q and the rRUM item parameters. A Bayesian framework
is presented that accurately recovers Q using a spike—slab prior for item
parameters to select the required attributes for each item. We present Monte
Carlo simulation studies, demonstrating the developed algorithm improves
upon prior Bayesian methods for estimating the rRUM Q matrix. We apply the
developed method to the Examination for the Certificate of Proficiency in
English data set. The results provide evidence of five attributes with a partially
ordered attribute hierarchy.

Keywords: exploratory cognitive diagnosis modeling; reduced reparameterized unified
model; Bayesian; spike—slab priors

Introduction

Cognitive diagnosis models (CDMs) offer a useful psychometric framework
for classifying individuals on a collection of fine-grained binary attributes. A
critical component for applying existing CDMs is the specification of a binary Q
matrix, which indicates the attributes required for each item. Correctly specifying
O is essential for ensuring accurate diagnoses and model parameter estimates
(Henson & Templin, 2007a; Rupp & Templin, 2008). Prior CDM research
mainly relied upon content expert knowledge to specify Q. However, specifying
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Q is a challenging task. Cognitive theory may be too underdeveloped to offer
guidance for specifying Q. Additionally, even in cases where cognitive theory is
available, there is no guarantee that content experts will agree on all entries of a
O matrix. The general unavailability of Q for most content areas and data sets
poses a barrier to widespread applications of CDMs.

Clearly, a fundamental problem for psychometric research and practice is the
estimation of Q. Recent research addressed this critical issue for CDMs by
developing procedures for validating a specified @ (Chiu, 2013; de la Torre,
2008; de la Torre & Chiu, 2016), estimating a subset of elements of @ (DeCarlo,
2012; Templin & Henson, 2006), estimating Q for the deterministic-input, noisy-
and-gate (DINA) model (Y. Chen, Culpepper, Chen, & Douglas, 2016; Chung,
2014; J. Liu, Xu, & Ying, 2012, 2013; Xiang, 2013), and estimating @ for more
general CDMs (Y. Chen, Liu, Xu, & Ying, 2015; Xu & Shang, 2017). Estimation
of the DINA Q was an important step for broadening the application of CDMs.
However, the DINA model is one of the more restrictive CDMs. That is, if K
denotes the number of binary attributes, the DINA model assumes that responses
for members of the 2X latent classes are described by only two parameters for
each item, which may be too restrictive in some cases. Consequently, there is an
opportunity to develop exploratory methods for estimating Q for more flexible
CDMs. One alternative to the DINA is the reduced reparameterized unified
model (rRUM). The rRUM has at most K + 1 item parameters to describe
response probabilities for the 2% classes and is therefore a more flexible model
than the DINA. It should be noted that the rRUM is a special case of several more
general CDMs (de la Torre, 2011; Henson, Templin, & Willse, 2009; von Davier,
2008; Xu, 2017) that offer even greater flexibility by estimating at most 25
parameters per item. We consider the rRUM in this article given the model is
more flexible than the DINA and estimation of the rRUM @ is an important
development for estimating @ for more general CDMs.

We develop a Bayesian method for estimating the rRUM @, which we refer to
as the exploratory tTRUM (i.e., E-fRUM). The developed E-rRUM explicitly
addresses three issues associated with estimating Q. First, the item response
function (IRF) for the rRUM presents a unique identifiability issue that must
be addressed in order to accurately estimate Q. In the next section, we show that a
confound arises when attempting to jointly estimate elements of Q and the
corresponding rRUM item parameters. Consequently, accurate recovery of the
rRUM @ requires directly addressing the confound between model parameters.
We employ a spike—slab prior for the item parameters to address the confounding
with elements of Q and to select which attributes are needed for which items.

Second, Y. Chen, Culpepper, Chen, and Douglas (2016) report Monte Carlo
evidence that the accuracy of Bayesian estimation of the DINA Q matrix declines
as the sample size N and number of attributes K increase, whichis undesirable given
that more flexible CDMs such as the rRUM may require more data for accurate
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parameter recovery. We use Bayesian model selection procedures to more accu-
rately estimate @ using Markov chain Monte Carlo (MCMC). In fact, our Monte
Carlo simulation results suggest that recovery of Q improves with larger N.

Third, in our preliminary investigations, we found that estimating Q is more
difficult whenever the associations among the attributes satisfy a more parsimo-
nious structure. Accordingly, there may be some instances where a parsimonious
model for attributes provides better fit than an unstructured model (e.g., see
Culpepper & Hudson, 2017). We incorporate a higher order model (de la Torre
& Douglas, 2004; Maris, 1999) for attributes to provide a more parsimonious
model for the 2X latent classes and offer a new Gibbs sampling algorithm to
estimate model parameters.

The remainder of this article includes five sections. The first section discusses
model identifiability issues associated with estimating the rRUM Q. In the sec-
ond section, we introduce a Bayesian formulation for estimating the E-rRUM
model parameters. The third section reports results from a Monte Carlo simula-
tion study and provides evidence the developed procedures outperform prior
strategies (e.g., see Y. Chen, Liu, et al., 2015; Chung, 2014) for estimating the
rRUM Q. The fourth section presents an application of the E-fRUM to the
Examination for the Certificate of Proficiency in English (ECPE) data (Templin
& Hoffman, 2013) and compares the model fit of the E-rRUM with the rRUM
using an expert-specified Q and a two-parameter item response theory (IRT)
model. The final section discusses the implications of this study and provides
concluding remarks.

The rRUM

Let Y;; be the observed binary response for individual i (1 <i < N) to item j
(1<j<J). Let o = (%1, -..,%x) where a; € {0, 1}K and oy is the latent
binary attribute for individual i on attribute & (1 < k < K). Furthermore, let g,/ =
(gj1, - - -, q;x) be the jth row of Q such that g = 1 if attribute £ is required for
item j and 0 otherwise. The IRF for the rRUM is

K
P(Yy = l|ey, 1, q) = o [ [ )9, (1)
k=1

where 7} is the probability, ¥;; = 1 if individual  has all the required attributes,
vy = (7}, ...,rj.*K)', and 0 <rj <1 is a penalty parameter for missing a
required attribute k.

One observation from Equation 1 is that there is a confound between g and
7 Specifically, it is impossible to distinguish between rRUM IRFs, where g;; =

0 versus g = 1 and rj = 1 given that

P (Yjley, r}, 7, g, i = 1,q5 = 1) = P (Yle, 1}, 7, g, g = 0). (2)
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Clearly, the estimation of gj; is confounded with ;. Furthermore, researchers
can expect empirical identifiability issues whenever 7 ~ 1. In fact, during our
preliminary investigations estimating the rRUM @ via MCMC, we generally
found that a true gz = 0 was estimated as gz = 1 with a corresponding
7 = 1. Therefore, successful estimation of the rRUM Q must directly address
the confound between gj; and r};.

In the next section, we present a strategy for estimating the E-rRUM. That is,
we fix the elements of Q equal to 1 (i.e., gix = 1 for all j and k) and perform
model selection to determine whether the associated item parameter is rj = 1
(i.e., the attribute is not needed for the item) or 0 < <1 (i.e., the attribute is
needed for the item).

Bayesian Estimation of E-rRUM
Overview Bayesian Formulation

This subsection discusses the following three components of the E-rRUM,
which includes models for the (1) observed Yj;, (2) latent structure for e, and (3)
item parameters ®* = (1}, ..., m}) and r*.

Model for observed Y;. The E-rRUM employs a data augmentation strategy to
model the rRUM IRF (e.g., see Culpepper & Hudson, 2017). The rRUM is a
generalized noisy input, deterministic “AND” gate model, which assumes that
observed responses are deterministically related to a collection of latent
responses according to an “AND” logic gate, and the latent responses are sto-
chastically related to the underlying attributes. Accordingly, let X;z be a latent
response that equals 1 if individual 7 correctly applies attribute & to item j and 0
otherwise, and let Xjo = (Xj1, ... ,X;,-K)' be a random vector of latent responses
for individual 7 on item j and let Xj;, be a realized value. We use the conjunctive
condensation rule (i.e., an “AND” logic gate) to deterministically relate the
observed Yj to the latent responses,

vy =] s ®)

Unlike Culpepper and Hudson (2017), the conjunctive condensation rule in
Equation 3 is not a function of the Q matrix. Instead, we fix g = 1 in Equation
3 to address the confound between 7, and g;. Consequently, as discussed below,
under our formulation, “inactive” latent responses are characterized by Xz = 1.

We model each latent response as conditionally independent given attributes
and augmented item parameters,

Xg&hﬁh Bojis Brj ~ Bemoulli[CD (B(!jk + Bljﬂi&)] ) (4)
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where @(-) is the normal cumulative distribution function, B is an intercept,
and B4 is the impact of possessing the attribute on the probability of a correct
latent response. Under this formulation, the probability of “guessing” latent
response k on item j is ®(B,;), and the probability of slipping is
1= ®(Boy + By)-

We use a probit data augmentation strategy to model Xj; (e.g., see Albert,
1992). That is, we define a deterministic relationship between Xj;; and a latent
augmented variable, X7, such that Xj = Z(Xj; > 0). The prior for the contin-
uous latent response augmented data is X7 |0, Boss Byjx ~ N (Bojr + Byjg %k 1)-

Model for latent structure of o;. We consider two different models for the latent
attributes, e;. First, we consider an unstructured model for a; (e.g., see Culpep-
per, 2015; Culpepper & Hudson, 2017) as presented below in Equations 5 and 6:

251
plaiimoc [ w79 v = 2, .. 2,1), (5)
c=0
n= (Eo, Ty o en ,sz_l)!‘“vDirich.let (do), dy = (dm, - !d0,2"—1)! (6)

where Z (-) is the indicator function, . = P (a}v = c), and the K-vector v is used
to create a bijection between the 2X classes and the integers between 0 and 2 —
1 (Chung, 2014; von Davier, 2014a). Prior information about class probabilities
can be encoded in dy. We use a uniform prior for = with dy = 1,«.

In practice, the latent class probabilities may satisfy some underlying structure
that is better described by a more parsimonious model. At least two alternatives
have been proposed in the literature. For instance, Henson, Templin, and Willse
(2009) and Templin, Henson, Templin, and Roussos (2008) describe a multi-
variate probit model underlying «;, and de la Torre and Douglas (2004) and
Maris (1999) assume the binary attributes are independent when conditioned
upon higher order factors. We consider the higher order factor model as an
alternative to the unstructured model in Equations 5 and 6 where the elements
of a; are assumed independent, given a p-vector of higher order factors,

éi = (ﬁil PR :iip)r:!
p (e, T, A) = HP (2 |G, T, A), (7)

where T = (11, ..., k) is a vector of thresholds and A = (Ay, ... ,Ag) is a
K x p loading matrix. There are many options for the parametric form for the
model relating o to €. We use a probit model to relate latent factors to attri-
butes, that is, p (v = 1€, T, Ax) = © (ALE; — ).

Our formulation for the higher order probit model follows strategies from
Bayesian IRT models (Albert, 1992; Béguin & Glas, 2001; Culpepper, 2016).
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That is, we introduce a normally distributed augmented variable o, and specify a
deterministic relationship between oy and of. Let af = (o), ..., %) be a
K-vector of augmented variables for individual 7. Similar to de la Torre and
Douglas (2004) and Templin et al. (2008), we consider a single higher-order

factor &; (i.e., p = 1) for individual i and let & = (£, ...,Ey) (note that the
formulation below can be easily extended to the p > 1 case). Additionally, let
A= (A1, ..., k) be a K-vector of loadings for the single factor. The Bayesian

formulation for the higher order probit model with a single factor follows:
wx =I(og > 0), (8)
o = (0‘.’{, s ,ﬁ}’v)!ﬁ: h:’:“mNXK(E.»h! - INT(:[N: IK): (9)
E~ Ny (0, 1), (10)
T“NK(OK,GEIK), (11)

K

A~ Ni(0g, o716) [ [Z(0 > 0). (12)

k=1

The deterministic relationship between o and oy in Equation 8 and the matrix
normal distribution prior for the N x K matrix a* in Equation 9 together imply
the probit models for the higher order single factor model. Equation 10 specifies
a multivariate normal prior for £ across individuals with a N-vector of 0s (i.e., 0y)
as the expected value and an N identity matrix as the variance—covariance matrix
(i.e., the higher order factors have unit variance, and independence is assumed
between individuals). Equations 11 and 12 specify multivariate normal priors for
the latent thresholds T and loadings N with means 0x and variance—covariance
matrices o2lx and c7lg, where o2 and o} are specified constants. Note the
identification restriction that each A; > 0.

Prior fort* and r*. We formulate a prior for the item parameters by using a data
augmentation strategy that defines m; and rj; as functions of augmented item

parameters (Hartz, 2002). Specifically, the deterministic functions relating the
augmented item parameters with 7 and r;; follow

. L oy
i :}H@(Bgﬁ"ﬁ‘ﬁlj&)! rﬁzw—m’

As noted above, we estimate the E-rRUM Q by determining which attributes
are active (i.e., 0 <rj < 1) versus inactive (i.e., rj = 1) for each item. The
extent to which r, is active is characterized by different combinations of values

k=1,... K. (13)

for B and ;. For instance, Equation 13 shows that 7, is inactive (i.e., 7 = 1)
whenever B,; = 0. Additionally, rj; ~ 1 in cases where By is large and
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positive. For instance, values of By, > 1.96 correspond with guessing probabil-
ities for the latent response Xj;; exceeding 0.95 and 7}, near 1. In contrast, rj; is
active when 3, > 0, and the guessing probabilities are not too large (e.g., By is
not large and positive).

These observations imply we can specify a spike—slab prior (e.g., see George
& McCulloch, 1993) for Bgz and By to select whether 7 is active versus
inactive. Let 63 be an augmented binary variable that indicates whether attribute
k is needed for item ;. Specifically, if attribute & is needed for item j, then o = 1
and By, > 0and By is not positive and large. Otherwise, if 53 = 0, then p,; is
near 0, and By is large in the positive direction. The spike—slab prior to char-
acterize the activeness of rj; is

P (Bojis Bjel8i) oc Sixf1 (Boe, Buye) + (1 — 8 ol Bojer Buje ), (14)

where f; denotes the “slab” and fj is the “spike.”

O’Hara and Sillanpdi (2009) review several popular approaches for Baye-
sian variable selection in the statistical literature, and we follow their recom-
mendation to use a “stochastic search variable selection” prior specification.
That is, we assume the augmented item parameters are independent and define
the slab as B(]jk ""N(O, 1/V0]) and B]jk ""N(O, 1/1»‘]])1—([3]}* = 0) and the Spikﬁ
as o ~N(0,1/voo) and Bz ~N(0,1/v10)Z(Byx > 0), where voo, Voi, Vio,
and vy; are constants. O’Hara and Sillanpéi (2009) note that the scale constants
must be tuned. We found in the Monte Carlo simulation study that using the
values of vgg = 0.1, v19 = 10, vo; = 4,and v;; = 2 accurately selected the active
and inactive rj;. The values for the constants have a practical interpretation as
well. We noted that active 7} are less than 1 when By are not too large and py;
are positive. Therefore, setting vo; = 4 and vy; = 2 corresponds to prior var-
iances for By; and fB; of 0.25 and 0.5, respectively, which corresponds with the
notion of an active 7. In contrast, vop = 0.1 implies the variance of By; is 10,
and vig = 10 implies the variance of B, is 0.1, so the spike allows B to be
large and positive and B, to be near 0 as characterized by inactive rj;.

The spike—slab model selection parameters & for j=1,...,J and k =

1, ...,K are conditionally independent Bernoulli random variables with prob-
ability m,

8¢/ ©™¢ Bernoulli (), (15)

o~ Beta (a, b). (16)

Furthermore, © follows a Beta distribution with prior parameters “a” and “b.”
We employed a uniform prior for o in the simulation study and application and
seta=b=1.
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The spike—slab approach in Equations 14 through 16 offers at least two ben-
efits. First, the prior directly addresses the confound when estimating g;x and &.
Specifically, the elements of Q are set to 1, and &; is used to infer which
attributes are needed for which items. Second, each d; can be directly used to
perform model selection. For instance, one option for estimating g is to use the
posterior average 8 as g = Z (S > 0.5).

Approximating the Posterior Distribution

We use Gibbs sampling to estimate the E-rRUM parameters. Specifically, the
algorithm sequentially updates the (1) augmented latent responses Xj, (2) latent
attributes «; under either the unstructured or higher order factor model, (3)
rRUM item parameters, and (4) spike-slab parameters for performing model
selection. Additional details regarding each step are available in Appendix A
of the online version of the journal.

Monte Carlo Simulation Study
Overview

We report results from a Monte Carlo simulation study in this section to assess
the relative performance of the developed Bayesian algorithms with a Bayesian
method that employs a Metropolis—Hastings (MH) sampler (Chung, 2014) and a
L, regularization estimator (Y. Chen, Liu, et al., 2015). Chung (2014) used MH
sampling to update the item parameters ®* and r* and a Gibbs sampler for
updating rows of @ by sampling g; from the 2¥ — 1 nonzero configurations. The
L, estimator penalizes the likelihood function for model complexity and simula-
tion evidence suggests the approach is accurate for recovering the DINA model
Q. 1t is important to note that the MH sampler does not explicitly address the
confound between Q and r*, so we expect the E-rRUM to be more accurate.

In the simulation study, we considered two samples sizes (i.e., N = 1,000 and
2,000), four levels of attribute dependence (i.e., one condition with uniformly
distributed attributes and three conditions with dependence generated from the
multivariate normal threshold model with a latent correlation of p = .05, .15, and
.25), and two values for the total number of attributes (i.e., K = 3 and 4). For the
conditions with uniformly distributed attributes, attributes were uniformly
sampled from the 2 classes. In contrast, dependent attributes were generated
from the latent multivariate normal probit model (e.g., see Chiu, Douglas, & Li,
2009) with thresholds for attribute & defined as k/(K + 1), amean vector of zero,
and a constant correlation among the attributes of p. Following Chiu and Kohn
(2016), the item parameters were defined as nf = 0.9 and rj; = 0.6. Further-
more, J = 30 for all conditions, and the true Q was sampled each replication by
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first randomly placing three Ix matrices into the rows of Q and then filling the
remaining rows by sampling uniformly from the 2X — 1 nonzero arrangements.

We compared our unstructured and higher order single factor models dis-
cussed in the previous section with parameter estimates using the MH sampler
and L, estimator. For our variable selection method, we fixed vgy = 0.1,
vio = 10, vo1 = 4, and vy; = 2. Note the single, higher order factor model was
estimated with the constraint that loadings were constant across k& such that
A = A, whereas the elements of © were freely estimated. The L, estimator
requires a specified value for the lasso penalty parameter. We considered a grid
of values for the penalty parameter from 0.01 to 0.15 in increments of 0.005, and
we report the most accurate set of results for each replication.

The outcomes of interest were the accuracy of the estimated Q across the four
methods. We computed accuracy both matrix-wise and entry-wise across the
replications. That is, the matrix-wise accuracy rate was computed as

1 100

— =0 17
100 o I(Q Qr)! ( )
where Q,, is the estimated @ for replication ». The entry-wise accuracy rate was
defined as

1 100 1 J K
S A S ) o

=1k=1
where g, is the estimated gj; for replication 7.

For the MH sampler, we followed Chung (2014) and computed Q using the
entry-wise mode. For the E-rRUM, we computed §; using the entry-wise mode
for 8 (i.e., Gy = Z(3 > 0.5)). Note the L; estimator for Q is implied by the
pattern of nonzero coefficients in the transformed rRUM IRF (e.g., see Y. Chen,
Liu, et al., 2015, p. 856).

We executed 100 replications for each combination of parameter values and
used chain lengths of 80,000 and a burnin of 20,000 iterations for both Bayesian
methods. The Bayesian methods were programmed using Repp (Eddelbuettel
etal., 2011). The run times for the N = 2,000 and K = 4 conditions on a cluster
with 2.4 GHz processors was 2 hours, 16 hours, and 20 minutes for the E-rRUM,
MH sampler, and L, estimator, respectively.

Monte Carlo Results

Table 1 summarizes the results from the Monte Carlo simulation study regard-
ing the accuracy of Q estimation for the methods developed in this article
(i.e., the higher order and unstructured models for «;), the MH sampler, and the
L, regularization estimator. We note three features about the Monte Carlo results.
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TABLE 1.

Summary of Monte Carlo Simulation Study Accuracy of Q Estimation for the Higher
Order Single Factor Model (HO), Unstructured Model (Uns.), Metropolis—Hastings
Sampler (MH), and L Regularization for Values of K, N, and p

Q0= Q Entry-Wise Average

N pe K HO Uns. MH L HO Uns. MH Ly

1,000 .00 3 70 70 0 2 98.6 989 766 862
2,000 .00 3 77 81 0 3 99.3 99.3 699 853
1,000 .05 3 53 58 0 0 97.5 98.6 732 848
2,000 .05 3 71 70 0 0 99.2 98.5 72.1 84.6
1,000 15 3 52 53 0 0 97.1 97.8 76.6  86.1
2,000 15 3 69 67 0 2 98.8 97.3 732 86.1
1,000 25 3 38 43 0 0 97.6 9.6 766 86.1
2,000 25 3 72 57 0 2 99.1 9.2 754 895
1,000 .00 4 49 53 0 0 98.1 98.2 675 801
2,000 .00 4 68 66 0 0 99.0 99.0 658 797
1,000 .05 4 13 10 0 0 96.6 93.9 683 717
2,000 .05 4 52 40 0 0 98.6 97.6 650 782
1,000 15 4 23 9 0 0 96.8 944 683 796
2,000 15 4 45 32 0 0 98.3 97.1 683  80.7
1,000 25 4 15 10 0 0 96.3 93.2 717 798
2,000 25 4 30 38 0 0 97.3 9.9 642 810

Note. Results are based upon 100 replications. MH = Metropolis—Hastings sampling approach of
Chung (2014).
ap = 0 denotes attributes were uniformly sampled from {0, 1}*.

First, the Monte Carlo results support the use of the developed methods in this
article to estimate the E-rRUM Q@ matrix. That is, the higher order and unstruc-
tured models had better matrix-wise and entry-wise recovery rates than both the
MH sampler and L; methods.

Second, the results in Table 1 provide evidence that matrix-wise recovery of
0 is more challenging for the rRUM than for the DINA model. For example, Y.
Chen, Liu, Xu, and Ying (2015) and Y. Chen, Culpepper et al. (2016) report
matrix-wise recovery rates in the 80s and 90s for the DINA for the conditions
studied in this article. The Monte Carlo results suggest that the additional com-
plexity of the rRUM affects the recovery of Q. It is important to note that while
the matrix-wise recovery rates are smaller for the rRUM than the DINA that the
entry-wise recovery rates exceed 95% for the higher order model across the
simulated conditions. Additionally, the matrix-wise recovery rates of Q improve
as N increased.

Third, the relative performance of our unstructured and higher order models
varied by condition. Namely, the results in Table 1 suggest that the higher order

12



Culpepper and Chen

model tended to have higher matrix-wise recovery rates for larger N and p.
Furthermore, the entry-wise recovery rates for the E-rRUM models were com-
parable for the K = 3 and 4 conditions.

Application to the “ECPE” Data

We analyze the ECPE data set (e.g., see Templin & Hoffman, 2013), which is
available in the “cdm” R package version 6.4-23 (Robitzsch, Kiefer, George, &
Uenlue, 2015). The ECPE data include item responses from 2,922 examinees at
the University of Michigan as a test of advanced English skills. The ECPE data
were originally analyzed with the rRUM by Henson and Templin (2007b) using
an expert-specified Q matrix, which consists of three attributes: (1) morphosyn-
tactic rules, (2) cohesive rules, and (3) lexical rules. Subsequent studies analyzed
the ECPE using clustering algorithms (Chiu et al., 2009) and confirmatory CDMs
such as the DINA (Y. Liu, Douglas, & Henson, 2009), the rRUM (Chiu & Kohn,
2016; Henson & Templin, 2007b; Y. Liu et al., 2009), and more general CDMs
(Templin & Bradshaw, 2014; Templin & Hoffman, 2013; von Davier, 2014b).

Recent research with the ECPE data set offered competing conclusions
regarding the underlying structure. Specifically, Templin and Bradshaw (2014)
and von Davier (2014b) analyzed the ECPE data set with a general CDM using
the expert specified @ and found evidence that the probability of membership in
some classes was near 0 (i.e., that several elements of 1 are near 0). Researchers
offered two competing inferences based on this finding. First, one inference was
that the attributes are arranged into a linear hierarchy where some attributes must
be mastered before others (Templin & Bradshaw, 2014). Second, an alternative
interpretation is that a single, ordered skill or a continuous unidimensional trait
might underlie performance on ECPE items (von Davier, 2014b; von Davier &
Haberman, 2014).

We apply the unstructured E-rRUM to the ECPE data to estimate Q and
provide new evidence about the underlying structure. Specifically, we fit the
unstructured E-rRUM with K = 2-7 and compare the exploratory models with
the confirmatory rRUM that uses an expert-specified Q matrix from Templin
and Hoffman (2013) (e.g., see Table 2) using the Bayesian estimation algorithm
of Culpepper and Hudson (2017). Additionally, von Davier (2014b) found
evidence that a two-parameter IRT model had a lower Akaike information
criterion than the rRUM with an expert-specified 0, and we accordingly com-
pare model fit of a two-parameter normal ogive (2PNO; Albert, 1992) model
with the E-rRUM. We used chain of lengths of 80,000 and discard the first
20,000 iterations as burn-in. The E-rRUMs were all estimated using values for
Voo, Vo1, V1o, and vy as specified for the simulation study. In the remainder of
this section, we first discuss model fit and then present results from the best
fitting model.
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Development and Application of an Exploratory rRUM
Model Fit

We first compare the relative fit of the models using the deviance informa-
tion criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). Spe-
cifically, we computed the marginal DIC (i.e., we marginalize the likelihood
over attributes for the diagnostic models and integrate over the latent traits for
the 2PNO) rather than a conditional DIC for missing data models (e.g., see
Celeux, Forbes, Robert, & Titterington, 2006). The smallest DIC value of
85,058 corresponded to the E-rRUM with K = 5. In contrast, the DICs for the
expert O rRUM and the 2PNO were 111,143 and 85,203, respectively, and the
DICs for the E-TRUM with K =2, 3, 4, 6, and 7 were 85,258, 85,202, 85,124,
85,074, and 85,079.

We also evaluated relative model fit using posterior predictive checks. In
particular, the Q matrix specifies the underlying structure, so one way to
evaluate relative model fit is to compare how well the models reproduce the
item means and observed relationships among items. That is, an inadequate
model will be less likely to predict item means and reproduce the associa-
tions among the observed variables. We therefore assess model fit by com-
puting posterior predictive probabilities (PPPs) of the item means and odds
ratios for each pair of items (e.g., see W.-H. Chen & Thissen, 1997; Sin-
haray, Johnson, & Stern, 2006). We follow Sinharay, Johnson, and Stern
(2006) and consider PPPs smaller than 0.05 or greater than 0.95 to be
extreme and evidence of misfit.

We found evidence that all of the models effectively reproduced the
observed item means, so we do not report those results here. We computed
odds-ratio PPPs by (1) simulating observed responses Y") using model para-
meters from iteration r of the MCMC sampler; (2) computing the odds ratio for

each pair of items at iteration » as OR") = n)n{" (n(]'gng]]), where n7 is the

frequency of ones on both variables at iteration r, n(]’g is the frequency of ones

on the first item and zeros on the second at iteration r, etc.; and (3) computing
PPPs for each item pair as the proportion of generated OR")’s that exceeded
elements of the observed odds ratios. We found evidence the E-rRUM better
predicted relationships among the ECPE items than the rRUM with an expert-
specified Q and the 2PNO. In fact, 28.3% of the expert Q rRUM pairwise odd
ratios were considered too extreme (i.e., the confirmatory rRUM did a poor job
of describing pairwise item odds ratios), and 10.8% of the 2PNO PPPs were
considered extreme. In contrast, the percentage of out-of-range odds-ratio PPPs
for the E-rRUM were 11.1%, 10.3%, 7.4%, 4.8%, 5.8%, and 5.8% for K = 2, 3,
4,5, 6,and 7. The DICs and odds-ratio PPPs support the E-rRUM with K = 5.
In the next subsection, we summarize the results of the empirical application of
the E-rRUM with K = 5.
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Empirical Results for K =5

The results in the previous subsection support the presence of five binary
attributes rather than a continuous latent trait. In this subsection, we report results
for the E-TRUM with K = 5 and discuss the extent to which there is evidence for

an attribute hierarchy. Table 2 reports the E-rRUM parameter estimates (i.e., O,
8, #*, and =") along with the previously employed expert Q. Note that Q is

defined using the posterior element-wise mode for 8 (i.e., gz = Z (8% > 0.5)).
One immediate observation from Table 2 is that the expert Q is not captured by

0, which may be expected given the differences in model fit discussed in the
previous subsection.

The results in Table 2 offer evidence about the extent to which there is an
attribute hierarchy. Specifically, Table 2 shows that the estimated Q implies
the first attribute is needed for all items. The posterior averages of 8 in
Table 2 quantify uncertainty regarding the corresponding §j, and the esti-
mates suggest that the posterior probability the first attribute is required
exceeds 0.90 for all items. One conclusion is that students must possess the
first attribute to have the greatest probability of successfully answering the
items. In fact, the penalty for not possessing the first attribute is as low as
r31 =0.56 and 3, ; = 0.42 for items 7 and 22, and the average penalty for
not possessing Attribute 1 equaled 0.72.

Additional evidence to support an attribute hierarchy is found in the estimated
attribute structure. Table 3 reports the estimated ECPE latent class proportions
(i.e., ®) for the E-TRUM with K = 5. Our results in Table 3 agree with prior
research given that the probability of membership in several classes are near 0.
Specifically, the estimated 7 suggests there is a smaller probability of being
classified into an attribute class that is missing the first attribute. In fact, only
9.8% of the sample was assigned to one of the 14 classes that possesses at least
one attribute other than ;. Table 3 shows that seven of the 32 possible latent
classes had membership proportions exceeding 5%. Specifically, the structural
probabilities for the seven largest latent classes were .062 for (00000), .060 for
(10000), .060 for (11000), .075 for (11001), .081 for (11010), .086 for (11011),
and .242 for (11111).

Templin and Bradshaw (2014) interpreted the class probabilities and con-
cluded there was evidence of a linear attribute hierarchy. The results in Table 3
may instead provide evidence of a more complex attribute hierarchy (e.g., see
Kohn & Chiu, 2018). That is, using 5% as a threshold to infer which classes are
nonzero implies that Attribute 2 requires Attribute 1 is mastered, Attributes 4
and 5 require Attribute 2, and Attribute 3 requires Attributes 4 and 5 are
mastered. Rather than a linear hierarchy, the estimated class probabilities pro-
vide evidence of a partially ordered attribute hierarchy, given Attributes 4 and
5 are not ordered.
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TABLE 3.

ECPE Data Estimated Latent Class Proportions it for Unstructured E-rRUM With K =5
« 1 « 1
00000 .062 10000 .060
00001 .005 10001 .011
00010 .012 10010 .041
00011 .006 10011 .013
00100 .008 10100 .014
00101 .005 10101 .012
00110 .010 10110 .029
00111 .007 10111 .011
01000 .010 11000 .060
01001 .005 11001 .075
01010 .008 11010 .081
01011 .007 11011 .086
01100 .005 11100 .033
01101 .005 11101 .028
01110 .006 11110 .030
01111 .012 11111 .242

Note. ECPE = Examination for the Certificate of Proficiency in English; E-rRUM = exploratory
reduced reparameterized unified model.

Discussion

We presented a new exploratory approach for estimating the rRUM Q matrix.
We conclude this article in this section with a summary of our contribution and
recommendations for future research.

The E-rRUM provides a more flexible modeling framework than previous
research that estimated the DINA Q. Specifically, the more restrictive DINA
model includes only 2-item parameters, whereas the rRUM has up to K + 1
parameters per item. It is important to note that the increased flexibility of the
E-rRUM translated to lower matrix-wise recovery rates of Q than observed in
prior research for the DINA model. This finding has implications for future
research on estimating Q for more general CDMs. Namely, the rRUM is a
special case of several general CDMs (de la Torre, 2011; Henson et al.,
2009; von Davier, 2008), and it is likely that estimating Q will be more chal-
lenging for these models than the rRUM. An important goal for future research
is to develop procedures for estimating @ for more general CDMs. Xu and
Shang’s (2017) results provide a theoretical foundation for such work, and
future research must necessarily examine how study design features (e.g., sam-
ple size, latent attribute structure, the number of attributes) impact recovery of
O for these general models.
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We also offer improved Bayesian strategies for estimating the Q matrix. The
Monte Carlo evidence supports the use of the developed procedures over existing
Bayesian methods for estimating the rRUM Q. In the simulation study, the MH
sampler did not in any replication or condition recover all elements of Q. The
difference in model performance is likely attributed to the fact that our developed
Bayesian algorithms addressed the confound between Q and r*. Specifically, we
addressed the confound by fixing all elements of @ equal to 1 and then used
spike—slab priors for the augmented item parameters to determine which penalty
parameters are active. The Monte Carlo results suggest the developed methods
improve upon existing research. Another important finding from the Monte Carlo
study is that recovery of Q improved as N increased for K = 3 and K = 4.

The developed E-rRUM also offers a practical contribution for applied
researchers. The E-rRUM is applicable for theory development in a manner
similar to how exploratory factor analysis has been applied across the social
sciences. In fact, our application of the E-fRUM to the ECPE data provides
examples of the types of inferences that are available with exploratory CDMs.
First, we found evidence that estimating Q improved model fit in comparison to
using an expert-specified Q matrix and a unidimensional latent trait. Accord-
ingly, future researchers can use the E-TRUM to evaluate the plausibility of
existing cognitive theory. Second, we uncovered a different latent structure for
attributes than found in previous research using an expert-specified Q matrix.
One implication is that estimating Q has the potential to impact inferences and
theory development. For example, as noted above, prior research concluded that
the attributes underlying the ECPE data either satisfied a hierarchy or were
ordered along a unidimensional trait. The results of the E-rRUM instead support
the existence of five hierarchically structured attributes. That is, we found evi-
dence from the estimated Q that the first attribute is required for all items, and the
pattern of latent class probabilities may support a partially ordered attribute
hierarchy. Consequently, using the E-rRUM rather than the rRUM improved
model fit and altered substantive conclusions regarding the nature of the latent
attribute structure.

There are several directions for research. First, although the Monte Carlo
simulation study employed a similar design as previous studies, there is an
opportunity in future research to examine model parameter accuracy for addi-
tional attribute latent structures, numbers of attributes, and sample sizes. Subse-
quent Monte Carlo research will improve our understanding of factors that
impact recovery of Q. For instance, additional evidence is needed about para-
meter recovery and classification accuracy for cases where a subset of the items
might not load on the common skills and attributes. Second, future research
should consider extending the methods developed to more general CDMs. Our
application of the E-rRUM to the ECPE data set assumed a conjunctive relation-
ship, which may not be appropriate for all items. Future research should apply
more general exploratory CDMs to the ECPE data to evaluate the plausibility of
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the conjunctive assumption and to further evaluate the presence of an attribute
hierarchy. Third, we considered a fully exploratory approach for estimating Q;
however, researchers may have partial information where some values are known
based upon cognitive theory. In such cases, if some g are known, our approach
can be used by updating the remaining elements of @ conditioned upon the
known values. Future research should also more generally consider how to
incorporate expert knowledge into estimation. One approach researchers may
consider is to replace our prior with one that uses expert knowledge to specify the
chance each entry is 0 versus 1.

A final direction for future research relates to model identifiability for
exploratory CDMs. For instance, the estimated ECPE Q reported in Table 2 does
not satisfy sufficient conditions that ensure the model parameters are strictly
identified (i.e., that the model parameters map to distinct likelihoods). Specifi-
cally, Xu and Shang (2017) showed that one of the sufficient conditions to
strictly identify CDM parameters is that Q includes two identity matrices (see
Appendix B, available in the online version of the journal, for a summary of Xu
and Shang’s [2017] results). The estimated ECPE Q matrix for K = 5 does not
include simple structure for 10 items. Consequently, it may be the case that the
reported E-rRUM parameters are not strictly identified. In preliminary analyses,
we fit an E-rRUM that explicitly enforced model identifiability results (see
Appendix B, available in the online version of the journal, for details about the
algorithm for enforcing identifiability constraints). The results from the con-
strained E-rRUM supported a solution with K = 3, and we uncovered an esti-
mated @ with dense structure that included 6 simple structure items and the
remaining elements equal to 1s. One possible explanation for uncovering a dense
Q is that the true Q may not satisfy Xu and Shang’s (2017) sufficient conditions
for strict identifiability, and enforcing the identifiability conditions may yield a
misspecified model. Although the estimated Q we report may not satisfy condi-
tions for strict identifiability, the model parameters may be generically identified,
which “...implies that the set of points for which identifiability does not hold
has measure zero. In this sense, any observed data set has probability one of
being drawn from a distribution with identifiable parameters” (Allman, Matias,
& Rhodes, 2009, p. 3102). Satisfying generic identifiability is likely sufficient for
practical applications of exploratory CDMs, given there is no guarantee the
available items satisfy the more stringent strict identifiability conditions. Addi-
tional research is clearly needed to establish generic identifiability results for
more general CDMs.

In conclusion, CDMs are popular for their ability to classify individuals on a
fine-grained collection of attributes. The development of exploratory methods to
estimate Q for more general models is critical for widespread application of
CDMs. We introduced an exploratory version of the rRUM and made several
advances for Bayesian estimation of Q. The developed methods improved upon
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existing research and further broadened the use and applicability of CDMs in
applied research.

Acknowledgments

‘We thank Jeffrey Douglas, the editor, and two anonymous reviewers for helpful comments
and suggestions and Yunxiao Chen for sharing R code for estimating the DINA Q matrix
using the L, regularization estimator that we modified to estimate the rRUM (Q matrix.
Any remaining errors belong to the authors.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, author-
ship, and/or publication of this article: This research was supported by the Spencer
Foundation Grant #201700062 and by a grant from the National Science Foundation
Methodology, Measurement, and Statistics program grant #1632023. Opinions reflect
those of the authors and do not necessarily reflect those of the granting agency.

References

Albert, J. (1992). Bayesian estimation of normal ogive item response curves using Gibbs
sampling. Journal of Educational and Behavioral Statistics, 17, 251-269.

Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in
latent structure models with many observed variables. The Annals of Statistics, 37,
3099-3132.

Béguin, A. A., & Glas, C. A. (2001). MCMC estimation and some model-fit analysis of
multidimensional IRT models. Psychometrika, 66, 541-561.

Celeux, G., Forbes, F., Robert, C. P., & Titterington, D. M. (2006). Deviance information
criteria for missing data models. Bayesian Analysis, 1, 651-673. Retrieved from
https://doi.org/10.1214/06-BA122 doi: 10.1214/06-BA122

Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item
response theory. Journal of Educational and Behavioral Statistics, 22, 265-289.

Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2016). Bayesian estimation of the
DINA Q. Paper presented at the International Meeting of the Psychometric Society,
Asheville, NC.

Chen, Y., Liu, J, Xu, G.,, & Ying, Z. (2015). Statistical analysis of Q-matrix based
diagnostic classification models. Journal of the American Statistical Association,
110, 850-866.

Chiu, C.-Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied
Psychological Measurement, 37, 598—618.

Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis:
Theory and applications. Psychometrika, 74, 633—665.

Chiu, C.-Y., & Kéhn, H.-F. (2016). The reduced RUM as a logit model: Parameterization
and constraints. Psychometrika, 81, 350-370.

21


https://doi.org/10.1214/06-BA122

Development and Application of an Exploratory rRUM

Chung, M. (2014). Estimating the Q-matrix for cognitive diagnosis models in a Bayesian
Sframework (Unpublished doctoral dissertation). Columbia University, NY.

Culpepper, S. A. (2015). Bayesian estimation of the DINA model with Gibbs sampling.
Journal of Educational and Behavioral Statistics, 40, 454-476.

Culpepper, S. A. (2016). Revisiting the 4-parameter item response model: Bayesian
estimation and application. Psychometrika, 81, 1142-1163.

Culpepper, S. A., & Hudson, A. (2017). An improved strategy for Bayesian estimation of
the reduced reparameterized unified model. Applied Psychological Measurement, 42,
99-115. doi:10.1177/0146621617707511

DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension
of the DINA model. Applied Psychological Measurement, 36, 447-468.

de la Torre, J. (2008). An empirically based method of Q-matrix validation for the
DINA model: Development and applications. Journal of Educational Measurement,
45, 343-362.

delaTorre, J. (2011). The generalized DIN A model framework. Psychometrika, 76, 179—199.

de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical Q-matrix validation.
Psychometrika, 81, 253-273.

de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive
diagnosis. Psychometrika, 69, 333-353.

Eddelbuettel, D., Frangois, R., Allaire, J., Chambers, J., Bates, D., & Ushey, K.
(2011). Repp: Seamless R and C++ integration. Journal of Statistical Software,
40, 1-18.

George, E. L., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal
of the American Statistical Association, 88, 881—889.

Hartz, S. (2002). A Bayesian framework for the unified model for assessing cognitive
abilities: Blending theory with practicality (Unpublished doctoral dissertation)
University of Illinois at Urbana, Champaign, IL.

Henson, R. A., & Templin, J. (2007a). Importance of Q-matrix construction and its effects
cognitive diagnosis model results. Paper presented at Annual Meeting of the National
Council on Measurement in Education, Chicago, IL.

Henson, R. A., & Templin, J. (2007b). Large-scale language assessment using cognitive
diagnosis models. Paper presented at Annual Meeting of the National Council on
Measurement in Education, Chicago, IL.

Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive
diagnosis models using log-linear models with latent variables. Psychometrika, 74,
191-210.

Kéhn, H.-F., & Chiu, C.-Y. (2018). ldentifiability of the latent attribute space and
conditions of Q-matrix completeness for attribute hierarchy models. In M. Wiberg,
S. Culpepper, R. Janssen, J. Gonzalez, & D. Molenaar (eds), Quantitative Psychol-
ogy, (pp. 363-375). IMPS 2017. Springer Proceedings in Mathematics & Statistics,
vol 233. Springer, Cham. Retrieved from https://doi.org/10.1007/978-3-319-
77249-3_30.

Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psycholo-
gical Measurement, 36, 548-564.

Liu, J., Xu, G, & Ying, Z. (2013). Theory of the self-leaming Q-matrix. Bernoulli, 19,
1790-1817.

22


https://doi.org/10.1007/978-3-319-77249-3_30
https://doi.org/10.1007/978-3-319-77249-3_30

Culpepper and Chen

Liu, Y., Douglas, J. A., & Henson, R. A. (2009). Testing person fit in cognitive diagnosis.
Applied Psychological Measurement, 33, 579-598.

Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika,
64, 187-212.

O’Hara, R. B., & Sillanpéi, M. J. (2009). A review of Bayesian variable selection meth-
ods: What, how and which. Bayesian Analysis, 4, 85-117.

Robitzsch, A., Kiefer, T., George, A. C., & Uenlue, A. (2015). CDM: Cognitive diagnosis
modeling (R package version 4.6-0) [Computer software manual]. Retrieved from
http://CRAN.R-project.org/package=CDM

Rupp, A. A., & Templin, J. L. (2008). The effects of Q-matrix misspecification on para-
meter estimates and classification accuracy in the DINA model. Educational and
Psychological Measurement, 68, 78-96.

Sinharay, S., Johnson, M. S., & Stern, H. S. (2006). Posterior predictive assessment of
item response theory models. Applied Psychological Measurement, 30, 298-321.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian
measures of model complexity and fit. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 64, 583—639.

Templin, J. L., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A
family of models for estimating and testing attribute hierarchies. Psychometrika, 79,
317-339.

Templin, J. L., & Henson, R. A. (2006). A Bayesian method for incorporating uncertainty
into Q-matrix estimation in skills assessment. Symposium Conducted at the Meeting of
the American Educational Research Association, San Francisco, CA.

Templin, J. L., Henson, R. A, Templin, S. E., & Roussos, L. (2008). Robustness of
hierarchical modeling of skill association in cognitive diagnosis models. Applied Psy-
chological Measurement, 32, 559-574.

Templin, J. L., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates
using Mplus. Educational Measurement: Issues and Practice, 32, 37-50.

von Davier, M. (2008). A general diagnostic model applied to language testing data.
British Journal of Mathematical and Statistical Psychology, 61, 287-307.

von Davier, M. (2014a). The DINA model as a constrained general diagnostic model: Two
variants of a model equivalency. British Journal of Mathematical and Statistical
Psychology, 67, 49-71.

von Davier, M. (2014b). The log-linear cognitive diagnostic model (LCDM) as a special
case of the general diagnostic model (GDM). Research Report. ETS RR-14-40. ETS
Research Report Series. doi:10.1002/ets2.12043

von Davier, M., & Haberman, S. J. (2014). Hierarchical diagnostic classification models
morphing into unidimensional “diagnostic” classification models: A commentary.
Psychometrika, 79, 340-346.

Xiang, R. (2013). Nonlinear penalized estimation of true Q-matrix in cognitive diagnostic
models (Unpublished doctoral dissertation). Columbia University, NY.

Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The
Annals of Statistics, 45, 675-707.

Xu, G., & Shang, Z. (2017). Identifying latent structures in restricted latent class
models. Journal of the American Statistical Association. doi:10.1080/01621459.
2017.1340889

23


http://CRAN.R-project.org/package=CDM
http://CRAN.R-project.org/package=CDM

Development and Application of an Exploratory rRUM

Authors

STEVEN ANDREW CULPEPPER is an associate professor in the Department of Statis-
tics at the University of Illinois at Urbana-Champaign, Illini Hall, Room 115, 725 S.
Wright Street, Champaign, IL 61820, USA; email: sculpepp@illinois.edu. His research
interests include large scale testing, Bayesian models and computation, restricted latent
class models, and longitudinal modeling.

YINGHAN CHEN is an assistant professor in the Department of Mathematics & Statistics
at the University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA;
email: yinghanc@unr.edu. Her research interests include statistical computing,
advanced Monte Carlo methods, Bayesian analysis, and latent class models.

Manuscript received May 18, 2017

First revision received October 30, 2017
Second revision received May 24, 2018
Accepted June 18, 2018

24


mailto:sculpepp@illinois.edu
mailto:yinghanc@unr.edu


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


